
How-To: Build a Web Application with Ajax Part 3

Creating the Page

Now that we have created the Ajax object, and set up a simple
handler function for the request, it’s time to put our code into action.

The Fake Server Page

In the code above, you can see that the target URL for the request is
set to a page called fakeserver.php.

To use this demonstration code, you’ll need to serve
both ajaxtest.html and fakeserver.php from the same PHP-
enabled web server. You can do this from an IIS web server with some
simple ASP, too. The fake server page is a super-simple page that
simulates the varying response time of a web server using the PHP
code below:

Example 2.19. fakeserver.php

<?php

header('Content-Type: text/plain');

sleep(rand(3, 12));

print 'ok';

?>

That’s all this little scrap of code does: it waits somewhere between
three and 12 seconds, then prints ok.

The fakeserver.php code sets the Content-Type header of the
response to text/plain. Depending on the content of the page you

pass back, you might choose another Content-Type for your
response. For example, if you’re passing an XML document back to
the caller, you would naturally want to use text/xml.

This works just as well in ASP, although some features (such as
sleep) are not as easily available, as the code below illustrates:

Example 2.20. fakeserver.asp

<%

Response.ContentType = "text/plain"

' There is no equivalent to sleep in ASP.

Response.Write "ok"

%>

Throughout this book, all of our server-side examples will be written in
PHP, although they could just as easily be written in ASP, ASP.NET,
Java, Perl, or just about any language that can serve content through a
web server.

Use the setMimeType Method

Imagine that you have a response that you know contains a valid XML
document that you want to parse as XML, but the server insists on
serving it to you as text/plain. You can force that response to be
parsed as XML in Firefox and Safari by adding an extra call
to setMimeType, like so:

var ajax = new Ajax();

ajax.setMimeType('text/xml');

ajax.doGet('/fakeserver.php', hand, 'xml');

Naturally, you should use this approach only when you’re certain that
the response from the server will be valid XML, and you can be sure
that the browser is Firefox or Safari.

Hitting the Page

Now comes the moment of truth! Hit your local web server, load
up ajaxtest.html, and see what you get. If everything is working
properly, there will be a few moments’ delay, and then you’ll see a
standard JavaScript alert like the one in Figure 2.2 that says simply
ok.

Figure 2.2. Confirmation that your Ajax class is working as expected

Now that all is well and our Ajax class is functioning properly, it’s
time to move to the next step.

Example: a Simple AJAX App

Okay, so using the awesome power of AJAX to spawn a tiny little
JavaScript alert box that reads "ok" is probably not exactly what you
had in mind when you bought this book. Let’s implement some
changes to our example code that will make this XMLHttpRequest
stuff a little more useful. At the same time, we’ll create that simple
monitoring application I mentioned at the start of this chapter. The
app will ping a web site and report the time it takes to get a response
back.

Laying the Foundations

We’ll start off with a simple HTML document that links to two
JavaScript files: ajax.js, which contains our library,
and appmonitor1.js, which will contain the code for our
application.

Example 2.21. appmonitor1.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Strict//EN"

 "https://www.w3.org/TR/xhtml1/DTD/xhtml1-

strict.dtd">

<html xmlns="https://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1"

/>

 <title>App Monitor</title>

 <script type="text/javascript"

src="ajax.js"></script>

 <script type="text/javascript"

src="appmonitor1.js"></script>

 </head>

 <body>

 <div id="pollDiv"></div>

 </body>

</html>

You’ll notice that there’s virtually no content in the body of the page —
there’s just a single div element. This is fairly typical of web apps that
rely on AJAX functions. Often, much of the content of AJAX apps is
created by JavaScript dynamically, so we usually see a lot less
markup in the body of the page source than we would in a non-AJAX
web application for which all the content was generated by the server.
However, where AJAX is not an absolutely essential part of the
application, a plain HTML version of the application should be
provided.

We’ll begin our appmonitor1.js file with some simple content that

makes use of our Ajax class:

Example 2.22. appmonitor1.js (excerpt)

var start = 0;

var ajax = new Ajax();

var doPoll = function() {

 start = new Date();

 start = start.getTime();

 ajax.doGet('/fakeserver.php?start=' + start,

showPoll);

}

window.onload = doPoll;

We’ll use the start variable to record the time at which each request
starts — this figure will be used to calculate how long each request
takes. We make start a global variable so that we don’t have to gum
up the works of our Ajax class with extra code for timing requests —
we can set the value of start immediately before and after our calls to
the Ajax object.

The ajax variable simply holds an instance of our Ajax class.

The doPoll function actually makes the HTTP requests using
the Ajax class. You should recognize the call to the doGet method
from our original test page.

Notice that we’ve added to the target URL a query string that has the
start value as a parameter. We’re not actually going to use this value
on the server; we’re just using it as a random value to deal with
Internet Explorer’s overzealous caching. IE caches all GET requests
made with XMLHttpRequest, and one way of disabling that “feature”
is to append a random value into a query string. The milliseconds
value in start can double as that random value. An alternative to this
approach is to use the setRequestHeader method of
the XMLHttpRequest class to set the If-Modified-Since header

on the request.

Finally, we kick everything off by attaching doPoll to
the window.onload event.

Handling the Result with showPoll

The second parameter we pass to doGet tells the Ajax class to pass

responses to the function showPoll. Here’s the code for that
function:

Example 2.23. appmonitor1.js (excerpt)

var showPoll = function(str) {

 var pollResult = '';

 var diff = 0;

 var end = new Date();

 if (str == 'ok') {

 end = end.getTime();

 diff = (end - start) / 1000;

 pollResult = 'Server response time: ' + diff +

' seconds';

 }

 else {

 pollResult = 'Request failed.';

 }

 printResult(pollResult);

 var pollHand = setTimeout(doPoll, 15000);

}

This is all pretty simple: the function expects a single parameter,
which should be the string ok returned from fakeserver.php if
everything goes as expected. If the response is correct, the code does

the quick calculations needed to figure out how long the response
took, and creates a message that contains the result. It passes that
message to pollResult for display.

In this very simple implementation, anything other than the expected
response results in a fairly terse and unhelpful message: Request
failed. We’ll make our handling of error conditions more robust when
we upgrade this app in the next chapter.

Once pollResult is set, it’s passed to the printResult function:

Example 2.24. appmonitor1.js (excerpt)

function printResult(str) {

 var pollDiv =

document.getElementById('pollDiv');

 if (pollDiv.firstChild) {

 pollDiv.removeChild(pollDiv.firstChild);

 }

 pollDiv.appendChild(document.createTextNode(str))

;

}

The printResult function displays the message that was sent
from showPoll inside the lone div in the page.

Note the test in the code above, which is used to see whether
our div has any child nodes. This checks for the existence of any text
nodes, which could include text that we added to this div in previous

iterations, or the text that was contained inside the div in the page

markup, and then removes them. If you don’t remove existing text
nodes, the code will simply append the new result to the page as a
new text node: you’ll display a long string of text to which more text is
continually being appended.

Why Not Use innerHTML?

You could simply update the innerHTML property of the div, like so:

document.getElementById('pollDiv').innerHTML = str;

The innerHTML property is not a web standard, but all the major
browsers support it. And, as you can see from the fact that it’s a single
line of code (as compared with the four lines needed for DOM
methods), sometimes it’s just easier to use than the DOM methods.
Neither way of displaying content on your page is inherently better.

In some cases, you may end up choosing a method based on the
differences in rendering speeds of these two approaches
(innerHTML can be faster than DOM methods). In other cases, you
may base your decision on the clarity of the code, or even on personal
taste.

Starting the Process Over Again

Finally, showPoll starts the entire process over by scheduling a call
to the original doPoll function in 15 seconds time
using setTimeout, as shown below:

Example 2.25. appmonitor1.js (excerpt)

var pollHand = setTimeout(doPoll, 15000);

The fact that the code continuously invokes the doPoll function
means that once the page loads, the HTTP requests polling
the fakeserver.php page will continue to do so until that page is
closed. The pollHand variable is the interval ID that allows you to

keep track of the pending operation, and cancel it
using clearTimeout.

The first parameter of the setTimeout call, doPoll, is a pointer to
the main function of the application; the second represents the length
of time, in seconds, that must elapse between requests.

Full Example Code

Here’s all the code from our first trial run with this simple monitoring
application.

Example 2.26. appmonitor1.js

var start = 0;

var ajax = new Ajax();

var doPoll = function() {

 start = new Date();

 start = start.getTime();

 ajax.doGet('/fakeserver.php?start=' + start,

showPoll);

}

window.onload = doPoll;

var showPoll = function(str) {

 var pollResult = '';

 var diff = 0;

 var end = new Date();

 if (str == 'ok') {

 end = end.getTime();

 diff = (end - start)/1000;

 pollResult = 'Server response time: ' + diff +

' seconds';

 }

 else {

 pollResult = 'Request failed.';

 }

 printResult(pollResult);

 var pollHand = setTimeout(doPoll, 15000);

}

function printResult(str) {

 var pollDiv =

document.getElementById('pollDiv');

 if (pollDiv.firstChild) {

 pollDiv.removeChild(pollDiv.firstChild);

 }

 pollDiv.appendChild(document.createTextNode(str))

;

}

In a bid to follow good software engineering principles, I’ve separated
the JavaScript code from the markup, and put them in two different
files.

I’ll be following a similar approach with all the example code for this
book, separating each example’s markup, JavaScript code, and CSS
into separate files. This little monitoring app is so basic that it has no
CSS file. We’ll be adding a few styles to make it look nicer in the next
chapter.

Running the App

Try loading the page in your browser. Drop it into your web server’s
root directory, and open the page in your browser.

If the fakeserver.php page is responding properly, you’ll see
something like the display shown in Figure 2.3.

Figure 2.3. Running the simple monitoring application

Further Reading

Here are some online resources that will help you learn more about
the techniques and concepts in this chapter.

JavaScript’s Object Model

• http://docs.sun.com/source/816-6409-10/obj.htm
• http://docs.sun.com/source/816-6409-10/obj2.htm

Check out these two chapters on objects from the Client-Side
JavaScript Guide for version 1.3 of JavaScript, hosted by Sun
Microsystems. The first chapter explains all the basic concepts you
need to understand how to work with objects in JavaScript. The
second goes into more depth about JavaScript’s prototype-based
inheritance model, allowing you to leverage more of the power of
object-oriented coding with JavaScript.

This is a brief introduction to creating private instance variables with
JavaScript objects. It will help you get a deeper understanding of
JavaScript’s prototype-based inheritance scheme.

XMLHttpRequest

Here’s a good reference page from the Apple Developer Connection. It
gives a nice overview of the XMLHttpRequest class, and a reference
table of its methods and properties.

http://docs.sun.com/source/816-6409-10/obj.htm
http://docs.sun.com/source/816-6409-10/obj2.htm
http://www.crockford.com/javascript/private.html
http://developer.apple.com/internet/webcontent/xmlhttpreq.html

This article, originally posted in 2002, continues to be updated with
new information. It includes information on making HEAD requests
(instead of just GET or POST), as well as JavaScript Object Notation
(JSON), and SOAP.

This is XULPlanet’s exhaustive reference on
the XMLHttpRequest implementation in Firefox.

Here’s another nice overview, which also shows some of the lesser-
used methods of the XMLHttpRequest object, such

as overrideMimeType, setRequestHeader,
and getResponseHeader. Again, this reference is focused on

implementation in Firefox.

This is Microsoft’s documentation on MSDN of its implementation
of XMLHttpRequest.

Summary

XMLHttpRequest is at the heart of AJAX. It gives

scripts within the browser the ability to make

their own requests and get content from the server.

The simple AJAX library we built in this chapter

provided a solid understanding of how

XMLHttpRequest works, and that understanding will

help you when things go wrong with your AJAX code

(whether you're using a library you've built

yourself, or one of the many pre-built toolkits and

libraries listed in Appendix A, AJAX Toolkits). The

sample app we built in this chapter gave us a

chance to dip our toes into the AJAX pool -- now

it's time to dive in and learn to swim.

Chapter 3. The "A" in AJAX

http://jibbering.com/2002/4/httprequest.html
http://www.xulplanet.com/references/objref/XMLHttpRequest.html
http://kb.mozillazine.org/XMLHttpRequest
http://msdn.microsoft.com/library/en-us/xmlsdk/html/xmobjxmlhttprequest.asp

It's flying over our heads in a million pieces.

 -- Willy Wonka, Willy Wonka & the Chocolate

Factory

The "A" in AJAX stands for "asynchronous," and

while it's not nearly as cool as the letter "X,"

that "A" is what makes AJAX development so

powerful. As we discussed in Chapter 1, AJAX: the

Overview, AJAX's ability to update sections of an

interface asynchronously has given developers a

much greater level of control over the

interactivity of the apps we build, and a degree of

power that's driving web apps into what was

previously the domain of desktop applications

alone.

Back in the early days of web applications, users

interacted with data by filling out forms and

submitting them. Then they'd wait a bit, watching

their browser's "page loading" animation until a

whole new page came back from the server. Each data

transaction between the browser and server was

large and obvious, which made it easy for users to

figure out what was going on, and what state their

data was in.

As AJAX-style development becomes more popular,

users can expect more interactive, "snappy" user

interfaces. This is a good thing for users, but

presents new challenges for the developers working

to deliver this increased functionality. In an AJAX

application, users alter data in an ad hoc fashion,

so it's easy for both the user and the application

to become confused about the state of that data.

The solution to both these issues is to display the

application's status, which keeps users informed

about what the application is doing. This makes the

application seem very responsive, and gives users

important guidance about what's happening to their

data. This critical part of AJAX web application

development is what separates the good AJAX apps

from the bad.

Planned Application Enhancements

To create a snappy user interface that keeps users

well-informed of the application's status, we'll

take the monitoring script we developed in the

previous chapter, and add some important

functionality to it. Here's what we're going to

add:

• a way for the system administrator to configure the interval
between polls and the timeout threshold

• an easy way to start and stop the monitoring process

• a bar graph of response times for previous requests; the number
of entries in the history list will be user-configurable

• user notification when the application is in the process of
making a request

• graceful handling of request timeouts

Figure 3.1 shows what the running application will look like once we're
done with all the enhancements.

The code for this application is broken up into three files: the markup
in appmonitor2.html, the JavaScript code in appmonitor2.js,
and the styles in appmonitor2.css. To start with, we'll link all the

required files in to appmonitor2.html:

Example 3.1. appmonitor2.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Strict//EN"

 "https://www.w3.org/TR/xhtml1/DTD/xhtml1-

strict.dtd">

<html xmlns="https://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1"

/>

 <title>App Monitor</title>

 <script type="text/javascript"

src="ajax.js"></script>

 <script type="text/javascript"

src="appmonitor2.js"></script>

 <link rel="stylesheet" href="appmonitor2.css"

 type="text/css" />

 </head>

 <body>

 </body>

</html>

Figure 3.1. The running application

Organizing the Code

All this new functionality will add a lot more complexity to our app, so
this is a good time to establish some kind of organization within our
code (a much better option than leaving everything in the global
scope). After all, we’re building a fully functional AJAX application, so
we’ll want to have it organized properly.

We’ll use object-oriented design principles to organize our app. And
we’ll start, of course, with the creation of a base class for our
application — the Monitor class.

Typically, we’d create a class in JavaScript like th is:

function Monitor() {

 this.firstProperty = 'foo';

 this.secondProperty = true;

 this.firstMethod = function() {

 // Do some stuff here

 };

}

This is a nice, normal constructor function, and we could easily use it
to create a Monitor class (or a bunch of them if we wanted to).

Loss of Scope with setTimeout

Unfortunately, things will not be quite so easy in the case of our
application. We’re going to use a lot of calls to setTimeout (as well
as setInterval) in our app, so the normal method of creating

JavaScript classes may prove troublesome for our Monitor class.

The setTimeout function is really handy for delaying the execution
of a piece of code, but it has a serious drawback: it runs that code in
an execution context that’s different from that of the object. (We
talked a little bit about this problem, called loss of scope, in the last
chapter.)

This is a problem because the object keyword this has a new
meaning in the new execution context. So, when you use it within your
class, it suffers from a sudden bout of amnesia — it has no idea what
it is!

This may be a bit difficult to understand; let’s walk through a quick
demonstration so you can actually see this annoyance in action. You
might remember the ScopeTest class we looked at in the last
chapter. To start with, it was a simple class with one property and one
method:

function ScopeTest() {

 this.message = "Greetings from ScopeTest!";

 this.doTest = function() {

 alert(this.message);

 };

}

var test = new ScopeTest();

test.doTest();

The result of this code is the predictable JavaScript alert box with the
text “Greetings from ScopeTest!”

Let’s change the doTest method so that it uses setTimeout to

display the message in one second’s time.

function ScopeTest() {

 this.message = "Greetings from ScopeTest!";

 this.doTest = function() {

 var onTimeout = function() {

 alert(this.message);

 };

 setTimeout(onTimeout, 1000);

 };

}

var test = new ScopeTest();

test.doTest();

Instead of our greeting message, the alert box that results from this
version of the code will read “undefined.” Because we
called onTimeout with setTimeout, onTimeout is run within a new
execution context. In that execution context, this no longer refers to
an instance of ScopeTest, so this.message has no meaning.

The simplest way to deal with this problem of loss of scope is by
making the Monitor class a special kind of class, called a singleton.

Continue with Part 4: Singletons in JavaScript…

Courtesy: https://www.sitepoint.com/build-your-own-ajax-web-apps/

Modified: 2021.10.04.7.10.AM

Dököll Solutions,. Inc.

https://www.sitepoint.com/build-your-own-ajax-web-apps/

